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Abstract
The concern of this paper is the study of local approximation properties of the de la Vallée

Poussin means V;,. We derive the complete asymptotic expansion of the operators V, and their
derivatives as n tends to infinity. It turns out that the appropriate representation is a series of

reciprocal factorials. All coefficients are calculated explicitly.
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1. Introduction
The de la Vallée Poussin means V, (n=1,2,...) of a 2zn-periodic integrable

(1)

function f are defined by

il £ix) =5z [ Foux—di (velo,20),
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with the kernel w, given by

(n!)z( XN\ & (n!)?
R WETNEN L o S ) A )
o) = 2053 ; CED T I @)
(see, e.g., [12, Section 2.5.2] or [12, pp. 299-300]). The operators V,, are trigonometric
analogues of the Bernstein polynomials. They are shape-preserving trigonometric
convolution operators [21].

The Voronovskaja-type formula

Jim n(V,(f1x) = f(x) = /P (x) (3)

for all integrable 2n-periodic functions f* admitting a derivative of second order at x
is due to Natanson (see [20, Chapter 10, Section 3, Satz 3] and the original paper
cited there; cf. also [17, Problem 29, p. 134]).

Formula (3) is a trigonometric analogue of Voronovskaja’s classical theorem [23]
for the Bernstein polynomials which was generalized by Bernstein [9] for higher
order differentiable functions.

In the same manner as Bernstein, among other things, Lee and Osman [I8§]
extended Natanson’s result (3).

Let C,, denote the class of continuous 2z-periodic functions. For an even 2z-
periodic integrable function ¢, its trigonometric moment of order 2j (j =0, 1,2, ...),
is defined by

Moy )—i/n(zsinf)Zj (1) dt (4)
25i\ P —27_[ . P ® .
Furthermore, for s,ve Ny, let
an) =3 E 07,20 w0, (5
) '

=
where #(-,-) denote the central factorial numbers of the first kind (see, e.g., [22, p.
213]). Further properties and applications can be found in [13,14]. Recall that the
t(-,-) are the coefficients in the expansion

n

i — Z tnj)x/ (n=0,1,2,...),

J=0
where the central factorial polynomials x are defined as
A =1 and X" =x(x+1 —n/2)m (neN).

Throughout the paper nf resp. nk denotes the rising factorial nk = nn+1)--(n+
k —1), n° = 1 resp. falling factorial n* =n(n —1)---(n —k + 1), n? = 1.

The above-mentioned result of Lee and Osman [18, Corollary 2.1] states that, if
f €Cyy and its derivatives up to order 2s exist at xe(—mn, ), there holds

lim »* (Vn( fix)— f: dgy(0,) £ (x)> :-’%. (6)

>0 |
n— oo = s!
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However, the asymptotic relation (6) does not give much insight into the asymptotic
behaviour of operators (1). This motivates a further treatment. The purpose of this
paper is to continue the work of Lee and Osman in order to derive the
complete asymptotic expansion for the sequence of de la Vallée Poussin means V,
in the form

o0

Valf: Z '/; (n> ), (7)

k=1 n

provided f € Cy, possesses derivatives of sufficiently high order at x. It turns out that
the appropriate representation of expansion (7) is a series of reciprocal factorials.
Formula (7) means that, for all geN,
q 3
. c(frx _
Valfix) = £+ 3 S5 o)
=1 (n+1)

as n— o0. Result (3) of Natanson is the special case ¢ = 1 with ¢ (f;x) =f"(x). We
give explicit expressions for all coefficients ¢ (f;x)(k = 1,2, ...).

We remark that in [1-4,6,7] the author gave analogous results for the Meyer-
Konig and Zeller operators, for the operators of Bleimann, Butzer and Hahn, the
Bernstein—Kantorovich operators, the Bernstein—Durrmeyer operators, and the
operators of Balazs and Szabados, respectively. Asymptotic expansions of multi-
variate operators can be found in [5,8].

After completion of the manuscript the author learned by personal communica-
tion from Prof. Butzer that formula (8) (i.e., the special case r = 0 of Theorem 2) was
previously found by Bleimann and Stark [10] under the stronger assumption that
/€ C%. Our results require only local smoothness of f.

2. The main results

As first main result we obtain the complete asymptotic expansion of the de la
Vallée Poussin means V,,.

Theorem 1. Let seN and xe(—mn, n). If f € Con and its derivatives up to order 2s exist
at x, the de la Vallée Poussin means V, satisfy the asymptotic relation

Valfix) = () + 3 % To(n™) ®)
k=1

as n— oo, where the coeﬁ?cients ck(f; x) are given by

>~

e(f3x) = Z (—1)"2(2k, 2v) £ (x) (9)

v=0

and 1(-,-) denote the central factorial numbers of the first kind.
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For the convenience of the reader we calculate the explicit form of the initial
coefficients cx(f; x) in expansion (8):

co(f5x) =/ (x),

a(f;ix) =),

aa(f3x) =3P () +/P(x)),

e3(f%) = H4 P (x) + SV (x) + 19 (),

ca(f3%) = 536/ (x) + 49/ (x) + 1410 (x) + /P (),

es(f3x) = 155(576/@) (x) + 8201 W (x) + 2731 (x) + 30/ (x) + r19(x)).

Concerning  simultaneous  approximation it is well known that
limy, -, o (d/dx) Vy(f5x) = f7(x) if fe Cy, possesses a derivative of first order at x
([20, Chapter 10, Section 3, Satz 4]; cf. [11]). In this direction, we derive the complete

asymptotic expansion of the differentiated de la Vallée Poussin means V,E") (r=
0,1,2,...).

Theorem 2. Let reNg,seN and xe(—n,n). If f € Cy, and its derivatives up to order

2(r+s) exist at x, the differentiated de la Vallée Poussin means V,g") satisfy the
asymptotic relation

ZS: (/0 x)

VO(fix) = £0(x) + v
(f5%) =" (x) 2 i1y

+o(n™) (10)

as n— oo, where the coefficients ci(f;x) are given by Eq. (9).

Remark 1. Note that, in Theorem 2, we propose only local smoothness conditions

on f. If we assume, in addition, that f(") exists on (—x, ), Theorem 2 would be an
immediate corollary of Theorem 1, since it is well known that

VI (fix) = Val( SV x)
if £ ey, (see, e.g., [12, Proposition 1.1.15]).
3. Auxiliary results

First, we determine the trigonometric moments of the functions w, as defined by
Eq. (2).

Lemma 3. For j,n=20,1,2, ..., we have

o= (1)(77)
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Proof. By definition (4), we obtain

22j+2n /oy -1 n/2 )
Maj(wn) :?< . ) 2/ , sin¥ cos™ ¢ dt

22421 (2 *IB 1 1
-0 (v gny)

with the beta function B, and Eq. (11) follows by a simple calculation. [l

In the following, for f € Cy,, let £, be defined as
Sut) =/ (1) sin(x — 1), (12)

Formula (3) is a trigonometric analogue of Voronovskaja’s classical theorem [23] (cf.
[15, Chapter 10, Section 3, Theorem 3.1]) for the Bernstein polynomials which was
generalized by Bernstein [9] (cf. [19, Section 1.6.1, Eq.(4)]) for higher order
differentiable functions.

Lemma 4. For f e Cy,, we have
2

Vilf33%) = 5Vt (fii %) (13)
and

Vi(fix) = = (Va(fx) = Vet (f3)). (14)
Proof. By Butzer and Nessel [12, Proposition 1.1.14], there holds

/f Dx—1t)dt (r=0,1,2,...)

and Lemma 4 follows by straightforward computation. Formula (14) also can be
found in [12, Eq. (2.5.21)]. O

Lemma 5. If f € Cy, and its derivatives up to order 2k(k e N) exist at x, the coefficient
ck(fx; x), as defined in Eq. (9), for f. is given by

athin =G oy 3 (L2 ik,

u:O v=u+1 2‘“ + 1

Proof. Lemma 5 follows by Leibniz rule. [

Lemma 6. Suppose k> — 1/2. Then, we have

n l - 5

=—4- ~— (n>1/2).
2n—1 2 4:0 n—i—k”l /2)
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Proof. Let k> — 1/2 and n>1/2. Then, we have

2n 11— nfk Z /
n—1" k+— 2 ’“
I

Using the well-known relation
Ly Sl (Rz>0
W - ; | j |Zﬁ ( z> )

(see, e.g., [16, Example 1, p. 214]), where S// denote the Stirling numbers of the first
kind, we obtain

2n—1 EZ

= (n+k) JHl

N
Z 571(k+3)
and Lemma 6 follows since >°/_ S/|(k + 0 = (k+ %)7. O

Lemma 7. The central factorial numbers of the first kind satisfy, for ke N and u =
0,1,2, ..., the both identities

i( g )t(zk,m:k(<k_1>t<2k—2,2u+2>+2z(2k—2,2u>>, (15)

v=0 2,Ll+1
k Y k
(-7 . 1.5 ( 2v ) ) 2(—1)
. 4+ =) 1(2,2v) = ———t(2k,2u + 2). 16
3 UHTS (e )@ =Gk . (9
Proof. We have
k 2 2u+1
Z ( ' >t(2k, 2v) = l(d) x12K]
= \2u+1 Qu + )\ dx o

The latter expression is the coefficient of x?**!

2 _
(x+ 1) = (1 +5>x[2k1 —i—k(x +(2k—1) +u>x[2k_2]
X X

which comes out to be
kt(2k,2p + 2) + kt(2k — 2,210) + (k> — K*)t(2k — 2,21 + 2).

in the polynomial

Hence,

k

»Z:; (2#21 1)“2"’ 2v)

= k(1(2k, 20 +2) + 1(2k — 2,21) + ((k — 1)* + k — 1)1(2k — 2,2u + 2)).
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The recurrence formula for the central factorial numbers of the first kind (see [22,
Eq. (25), p. 214]) yields

12k, 21+ 2) + (k — 1212k — 2,2+ 2) = t(2k — 2,2p),

which implies Eq. (15).
By Eq. (15), formula (16) is equivalent to

N, . .
- 1)!<k —§> ((F— 1)t(2) — 2,20 +2) + 2¢(2 — 2,2p))

2(-1)f
= t(2k,2u+ 2 1
(kfl)(k 1+ 2), (17)
which we will prove by mathematical induction. Eq. (17) obviously holds for k = 1.
Assume that it is true for an arbitrary ke N. Then, we have

Ktl o\ k1)
Y (5‘—1)1)!<k+ 1 _%) ((j = D)i(2 = 2,2u+2) + 20(2 — 2,2p))

j=1
( >zk: j)(k_%)/:j((j—l)t(Zj—z,qurg)
(—

J=1
)k+l
+21(2j —2,2p)) +

(kt(2k, 2+ 2) + 26(2k, 211))

(1"
= (2k + U(k— 1)!1(2k,2,u+2)

(— 1)kt
k!

- 2(;1)]((1{21(21(, 2+ 2) — 1(2k,2p))

2(-1)"

where we again used the recurrence formula [22, Eq. (25), p. 214]. This completes the
proof of Lemma 7. [

+ (kt(2k,2u + 2) + 2t(2k, 2u))

Now we show, that Theorem 2 holds in the special case r = 1.

Proposition 8. Let seN and xe (—n, n). If f € Cy, and its derivatives up to order 2s + 2
exist at x, the differentiated de la Vallée Poussin means V) satisfy the asymptotic
relation

Vif) =)+ ("(i 1;“2 T o)
k=1

as n— oo, where the coefficients ci(f;x) are given by Eq. (9).
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Proof. Combining Eq. (13) with Theorem 1 yields

n? —n Sl Ck(fx;x)
(fa ) — nl(fxa ) 2”—1;(n+1)m

+o(n™)

as n— oo and application of Lemma 6 yields

st o (f s sk T el oy
ZUERE SE L5 (k+;> S0

25 m+ D) YT D n+ 1)k

I gm i (fin) 1 G ( 1>k_‘-"
=52 % ¢(fyi X +o(n™*)
2k:0 (I’l+ k j:1 2
L d(f; |
_ k(f’xgm(nﬂ) (1> ),
=0 (n+1)

say, where

1 1 & 1"
d 5 — —7Ck X3 7_5 + = x; X
k(f x) 261+l(f ‘x) 4.j:l <.] 2> (f )

with the convention that a sum is to be read as 0 if the lower index is greater than the
upper index. We have to show that

de(f3x) = ce(f1x) (k=0,....9). (18)

For k =0, we have

dO(f? ) = 2cl(fx7 ) = ”(x) :f/(x) = Co(f/;x).

Now, let k>1. By Lemma 5, we have

(1) & k1 o
A0 =g I S5 (2 Yk 2,20
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and, by Lemma 7, we obtain

k Kk
2/3 D (DD (o) (ke (2k, 20+ 2) + 202k, 21)
n=0

k—1

- 1 S (1) 12, 20+ 2)
u=

k

k
Z £ (x) 12k, 200) = e (£ ).

u=0

In view of Eq. (18) this completes the proof of the proposition. [

4. Proof of the main theorems

Proof of Theorem 1. By the result of Lee and Osman (6), there holds

s—1 s
V(720 = 3 a0 @0 L 4 o (19
v=0 :

as n— oo, provided f € C,, and its derivatives up to order 2s exist at x. By Eq. (5) and
Lemma 3, we have

g ﬂt(2k2)
k=v k! (n—|-1)

and inserting this into Eq. (19) we obtain

as,v(wn) -

K N k k
Vn(f;X)ZZﬁZ( 112k, 2) /00 (x) + o(n™)
k=0 K- v=0

as n— co. This completes the proof of Theorem 1. [
Proof of Theorem 2. By Theorem 1 and the proposition, the assertion of Theorem 2

is true for r =0 and r = 1. We proceed by mathematical induction. Assume that
Theorem 2 is true for an integer >0, i.e.

s+2 "
O(fix) =000+ al/"5x) e 20
Vn (f?x) f (x)+k:l (n+])k —|—0(I’l ) ( )

as n— oo, provided f'e Cy; and its derivatives up to order 2(r + s+ 2) exist at x.
Then, by Lemma 4, we have

V,Er+2)(f; X) _ _HZ(VISI‘)(f; x) — V,S’_)] (fv X))
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Taking advantage of Eq. (20) we obtain

s+2
1 1
vI(fix) = - al /i)~ — | +o(n™)
; (n+ 1)~ n*
s+1 (r).
—n M’kx) o(n™)
=1 (n+1)
s . ) _ 12 .
— (k+ 1)Ck+1(f ax) - k Ck(f ,X) + O(I/lis)
J=0 (n+1)
as n— oo. By definition (9), we have
(k + Derer (f7x) = Ke(f7;x)
(_1)k+1 k+1
=0 (=D (1(2Kk +2,2) + K212k, 2v)) £ (x)
' v=0
(_l>k+l k+1

= TZ (—l)vt(Zk, 2y Z)f(r+2v)(x) _ Ck(f(Hz);x),

v=1

where we used the recurrence formula [22, Eq. (25), p. 214]. This completes the proof
of Theorem 2. [
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